The Health Effects of Pesticide Use

Methods to Conduct Community Studies with Farmers and School Children

Helen Murphy
Epidemiologist and Community Health Consultant

The FAO Programme for Community IPM in Asia in collaboration with Srer Khmer, Thai Education Foundation, and the Plant Protection Department of Vietnam

(revised) August 2002
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. RATIONALE .. 1</td>
</tr>
<tr>
<td>II. OBJECTIVES .. 3</td>
</tr>
<tr>
<td>III. METHODS ... 3</td>
</tr>
<tr>
<td>IV. EVALUATING THE IMPACT OF HEALTH STUDIES ... 7</td>
</tr>
<tr>
<td>V. TRAINING ... 8</td>
</tr>
<tr>
<td>1. Training materials .. 8</td>
</tr>
<tr>
<td>2. Introduction-Conceptual Framework .. 8</td>
</tr>
<tr>
<td>3. Signs and symptoms .. 9</td>
</tr>
<tr>
<td>2. Amounts of yearly exposure (liters of solution used per year) 10</td>
</tr>
<tr>
<td>3. Household storage and disposal practices ... 11</td>
</tr>
<tr>
<td>4. Pesticide classification .. 12</td>
</tr>
<tr>
<td>5. Exposure through pesticide handling during mixing and spraying 15</td>
</tr>
<tr>
<td>6. Sample Training Agenda (for School Children) .. Error! Bookmark not defined.</td>
</tr>
<tr>
<td>TECHNICAL ANNEXES ... 18</td>
</tr>
<tr>
<td>1. WHO Hazard Classification ... 18</td>
</tr>
<tr>
<td>2. Chemical families of pesticides ... 19</td>
</tr>
<tr>
<td>3. Definitions of signs and symptoms .. 23</td>
</tr>
<tr>
<td>4. Signs: How to examine for signs ... 24</td>
</tr>
<tr>
<td>5. Symptoms: How to interview for symptoms ... 25</td>
</tr>
<tr>
<td>6. Other conditions that mimic pesticide poisoning ... 26</td>
</tr>
<tr>
<td>7. Determining If Signs And Symptoms Are Pesticide Related ... 27</td>
</tr>
<tr>
<td>8. Surveillance Form .. 28</td>
</tr>
</tbody>
</table>
I. RATIONALE

There is heavy indiscriminate use of pesticides in most developing countries. This promotes the propagation of resistant pests, degrades the environment, and reduces farmer profit margins. Many products that are in use are highly toxic to human health. For example in Thailand and Cambodia, one popular pesticide used on cabbage crops is methyl parathion, an organophosphate. This product is restricted and banned in many countries, because it has an LD$_{50}$ level of 14mg/kg and is classified by World Health Organization as a Class 1a “extremely hazardous” substance.\(^2\)

Efforts to reduce toxic pesticide use in developing countries through national policies have, for the most part, failed. This is due to the power and marketing strength of chemical companies. Therefore, the focus of attention must turn to the consumer-farmer and his children to help them on their own reduce pesticide use.

Integrated pest management (IPM) promotes traditional non-chemical methods for crop protection. It operates in many developing countries primarily through grass-roots farmer groups and educational systems, such as primary schools in Thailand. Using adult learning methods, farmers and school children learn to solve pest-control problems by understanding natural eco-systems. This is accomplished through observation and experimentation on their own crops. Using non-chemical pest control strategies, farmers not only witness healthier crops that leave the environment safer, but they also assess the economic benefits by spending less of their profits on expensive chemicals.

An additional component to the study of ecology and economics in IPM is the issue of health. Studies in Indonesia demonstrate that up to 21% of all spray operations result in 3 or more signs and symptoms of acute pesticide poisoning. The frequency of spraying, hazard level of pesticides used, and skin contamination while spraying either through direct contact or wet clothing all are highly associated to poisonings.\(^3\) Furthermore, unsafe pesticide storage and disposal pose considerable risks of accidental poisonings in children and contaminate water and food supplies.

The consumer-farmer needs better education about these personal and community health hazards to further make informed decisions about the use of pesticides. Rather than being fed the information, we have put epidemiology in the hands of farmers and school children. Consistent with the IPM discovery-

\(^1\) The LD$_{50}$ value is a statistical estimate of the number of mg of toxicant per kg of body weight required to kill 50% of a large population of test animals.

learning model, they learn how to conduct their own studies on the health effects of pesticides. This along with ecology and economics drives the decision on continued pesticide use as illustrated below:

![Considerations for IPM decision-making:](image)

If farmers study the problem on their own, they not only reach a better understanding of the health hazards of indiscriminate pesticide use but can also take immediate action.

If school children study the problem there are a number of further benefits. First, we are educating a future generation who will be the primary beneficiaries of good personal health, a preserved natural environment, and a sound food-producing economy. Second, children can have an influence on protecting the health of their parents and themselves. With hands on experience they can act as powerful change agents by making all parties aware of the health hazards of pesticides. And third, the self-discovery learning that comes through conducting health studies in school children’s communities can increase the student’s skills in 5 learning areas:

* art
* math
* language
* teamwork
* critical thinking

This manual describes how farmers and school children can conduct these studies on the health effects of pesticides and how the process can operate through an IPM program or as classroom student projects. The survey topics farmers and school children investigate are those risk factors found in the formal Indonesian study referred to above. They include data collection on the pesticides in use, the amounts applied per year, exposure during spraying and at home, and finally the acute effects. The investigating farmers and school children then present the results back to those they interviewed and observed as well as the community for discussion.
The methods and training techniques have been well tested and implemented in the IPM programs of Vietnam, Cambodia, Indonesia, Thailand, and Sri Lanka. Studies with school children have been conducted in Cambodia and Thailand, the latter of which has been published. ⁴

II. OBJECTIVES

- Educate farmers, communities, teachers and school children (as future farmers) about the hazards and adverse effects of pesticide use.
- Provide the educational system a model for more relevant, non-formal, community- based training methodologies
- Provide government authorities (health, agriculture, etc) information on:
 - The kinds of pesticides in use
 - Spray frequencies
 - Number and types of pesticides applied together in a single spray operation
 - ‘Normal use’ pesticide application practices
 - The rate of adverse effects
 - Problems with pesticide storage and disposal
- Motivate farmers to join IPM farmer field schools.
- Reinforce IPM farmer field school graduates to continue with non-chemical pest control measures.
- Measure the impact IPM programs by conducting health surveys before and after introducing community IPM.

III. METHODS

The participating farmers (usually IPM graduates) and school children select their pesticide using friends, neighbors or parents to serve as respondents- a minimum of 30. The survey assesses:

- **Pesticides in use**: Inventories are made in household stores, local pesticide shops and fields. The pesticides are then classified by trade name, common name, chemical family, and WHO human health hazard levels.
- **Amounts of pesticides used** (liters and days exposure per year). Estimates are calculated by interviewing farmers based on their last full year of pesticide use.
- **Pesticide spraying practices**: Farmers are observed in the field for one full spray session, noting all contamination routes.

The Heath Effects of Pesticide Use: Methods to Conduct Community Studies

- **Pesticide household storage and disposal practices.** Households and garbage areas are inspected and analyzed for hazards to children, food, water and livestock.
- **Acute signs and symptoms of pesticide poisoning.** A simple health history and examination is performed before and after spraying as well as on the following day.

After collection, the data is tabulated and presented at community meetings in a format similar to the following on newsprint charts and graphics:

Pesticides: are presented first by WHO health hazard level to inform the community which ones are most dangerous to human health. The second table demonstrates the pesticides by chemical family. This is used to describe the health effects; specifically those which are toxic to the nervous system. As many farmers use more than one pesticide per application, the additive toxic effects (double dosing) is emphasized. In some cases (Cambodia) the label is glued to the last column for better recognition or the actual containers are pile sorted. Those chemicals, which have been banned or restricted, are pointed out during the meetings.

<table>
<thead>
<tr>
<th>WHO Hazard Levels</th>
<th># / % of farmers</th>
<th>Trade (common name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia (extremely hazardous)</td>
<td>25/100%</td>
<td>Folidol (methyl parathion)</td>
</tr>
<tr>
<td>Ib (highly hazardous)</td>
<td>15/60%</td>
<td>Monitor (methamidophos)</td>
</tr>
<tr>
<td>II (moderately hazardous)</td>
<td>25/100%</td>
<td>Thiodan (endosulfan)</td>
</tr>
<tr>
<td>* Only one</td>
<td>1/4%</td>
<td>Thiodan (endosulfan)</td>
</tr>
<tr>
<td>* Two</td>
<td>15/60%</td>
<td>Furadan (carbofuran)</td>
</tr>
<tr>
<td>* Thee</td>
<td>5/20%</td>
<td>Gramoxone (paraquat)</td>
</tr>
<tr>
<td>* All four</td>
<td>4/20%</td>
<td>Decis (deltamethrin)</td>
</tr>
<tr>
<td>III (slightly hazardous)</td>
<td>3/12%</td>
<td>Malate (malathion)</td>
</tr>
<tr>
<td>IV (unlikely if used safely)</td>
<td>5/20%</td>
<td>Delfin (BT)</td>
</tr>
</tbody>
</table>
Table 2: Pesticides by Chemical Family

<table>
<thead>
<tr>
<th>Chemical family</th>
<th># / % of farmers</th>
<th>Trade (common name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organophosphates (Op)</td>
<td>25/100%</td>
<td>Folidol (methyl parathion)</td>
</tr>
<tr>
<td>* Only one</td>
<td>5/20%</td>
<td>Monitor (methamidophos)</td>
</tr>
<tr>
<td>* Two</td>
<td>15/60%</td>
<td>Malate (malathion)</td>
</tr>
<tr>
<td>* All three</td>
<td>5/20%</td>
<td></td>
</tr>
<tr>
<td>Carbamates (C)</td>
<td>12/48%</td>
<td>Furadan (carbofuran)</td>
</tr>
<tr>
<td>Organochlorines (Oc)</td>
<td>15/60%</td>
<td>Thiodan (endosulfan)</td>
</tr>
<tr>
<td>Pyrethroids (Py)</td>
<td>25/100%</td>
<td>Decis (deltamethrin)</td>
</tr>
</tbody>
</table>

Amounts used on average last year and with IPM: Amounts per year are calculated for each farmer. Either each farmer’s totals and or the community average are displayed. The amount of liters solution per year with IPM is then calculated and displayed to demonstrate how IPM can reduce pesticide exposure. Some groups estimate this in grams of pesticides (Vietnam) and others also calculated costs pre and post IPM.

Table 3: Amount Of Pesticide Solution Sprayed By Farmers

<table>
<thead>
<tr>
<th>Average Farmer 1.crop</th>
<th>a. Tank size /lt.</th>
<th>b. tanks/session</th>
<th>c. ♦ session per week</th>
<th>d. ♦ # weeks per season</th>
<th>e. sessions /season (c*d)</th>
<th>f. seasons per year exposed (e*f)</th>
<th>Days per year exposed</th>
<th>Liters exposure per year abe*f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rice</td>
<td>15</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>1200</td>
<td>8</td>
<td>12000</td>
</tr>
<tr>
<td>beans</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>36</td>
<td>134</td>
<td>4</td>
<td>10800</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>142</td>
</tr>
<tr>
<td>With IMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rice</td>
<td>15</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>beans</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>450</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
Exposure During Spraying: Pesticide contamination of the various body parts is colored in red. The importance of skin as the most critical route of exposure, especially during mixing, is highlighted. Groups also discuss why personal protection is rarely used.

Household Storage and Disposal: This picture would show a typical household that demonstrates the safe and unsafe storage and disposal methods found during the survey. The percentages can be displayed at colored pie charts (Sri Lanka) or simple colored buttons depending on the sample size.
Signs and Symptoms: are usually displayed on a body map drawn by the children or farmer data collectors. Those signs and symptoms that are related to toxicity of the nervous system are highlighted, referring back to the pesticide table by chemical family. Farmers are warned that if they notice any of these effects they should stop spraying immediately and take a full bath with soap.

SIGNS AND SYMPTOMS OF PESTICIDE POISONING

- **Runny nose** (11%)
- **Blurred vision** (25%)
- **Excessive salivation** (17%)
- **Burning sensation in nose** (15%)
- **Twitching eyelids** (22%)
- **Red conjunctiva** (13%)
- **Eye itching, or burning** (27%)
- **Sore throat** (16%)
- **Dizziness** (21%)
- **Cough** (9%)
- **Dry throat** (58%)
- **Short of breath** (22%)
- **Chest pain/burning** (39%)
- **Numbness** (37%)
- **Tremors** (28%)
- **Muscle cramps** (16%)
- **Staggering gait** (6%)
- **Nausea** (21%)
- **Abdominal cramps** (11%)

*neurologic
**neurologic and/or irritant effects

IV. EVALUATING THE IMPACT OF HEALTH STUDIES

The following indicators can be used to measure behavior change after the health surveys and community meetings. The same respondents must be surveyed again after at least 6 months. These practices are only those, which we expect to change.

- #/% Farmers joining IPM farmer field schools (assuming the latter is available).
- #/% Farmers using a pesticide that is Ia (extreme) and Ib (highly hazardous).
- Average spray frequency/week (vegetables) or per season (rice).
- Average spray days and liters of pesticide solution used per year (one year needed, post survey).
- #/% Households not child, water, food, and livestock safe in their pesticide storage and disposal practices.
- Average number of signs and symptoms per farmer post spray session.
V. TRAINING

Training is conducted in a workshop setting (25-30 participants) over 5 days. Participants are trained through group exercises with very little lecturing. One day needs to be set aside for practice data collection. At the end of the workshop, a community meeting must be arranged to supply the respondents with the results.

1. Training materials

- Newsprint paper
- 8 x10 white paper
- Marker pens (red, blue, black and green)
- A local pesticide list (or WHO IPCS book\(^5\)) with trade and common names, WHO health hazard levels and chemical families.
- A body map in local language.

2. Introduction-Conceptual Framework

Introduce the workshop by showing the factors that lead to pesticide poisoning (conceptual framework) with the following graphic:

![Conceptual Framework Diagram]

Using toxic chemicals + spraying frequently + exposure during spraying and mixing + unsafe household storage and disposal = potential illness

Describe **known risk factors** from the Indonesian study\(^6\)

- Using a Ia, Ib or II class pesticide (extreme, high or moderately hazardous pesticide as defined by the World Health Organization)
- Using a premixed pesticide ‘cocktail' concentrate of more than one product.
- Spraying frequently during one week.
- Skin contact and especially **wet** clothing.

These practices increase a sprayer’s chance of getting sick. In Indonesia 21% of all spray operations resulted in 3 or more signs and symptoms of pesticide poisoning.

3. **Signs and symptoms**

Body mapping
- Break the participants into small groups
- One person in each group should lie down on two taped together newsprints.
- Outline his/her body to make the body map.
- Cut up 31 pieces of paper.
- The group should brainstorm the signs and symptoms (S&S) of poisoning they have either experienced or seen in another farmer.
- They should write down each S&S on the pieces of paper and attach them to the body map. *[this first picture gives the instructor an idea of how much pesticide poisoning is occurring in the community]\(^7\)*
- Distribute the body map (see Annex 8) to let each group correct their body map
- Take each S&S card they thought was pesticide poisoning and discuss why it is not included on the form [these may be unknown effects or work related problems like back or joint pain]

Difference between a sign and symptom (Annex 3)
- Label 2 newsprints and label one SIGNS and the other SYMPTOMS
- Ask the class if they know the difference
- Define SIGN: an health effect you can SEE (like vomiting, tremors, staggering gait)
- Define SYMPTOM: a health effect you cannot see but the person FEELS (like nausea, headache, dizziness)

\(^7\) For instance in Cambodia where very hazardous chemicals are used, farmers list all known S&S including those that are most serious. But in Sri Lanka where all class Ia and Ib are banned, farmers list only a few minor S&S like dry throat and headache.
Sign and Symptom game

* Organize the class into a circle.
* One by one each participant chooses one S&S card out of a hat
* Each participant should either act out the S&S or describe it without using the actual word for the group to guess.
* Write the word on either the sign or symptom newsprint paper (actor and class to decide)
* Instructor demonstrates how to examine for the following signs: tremor, staggering gait, eye twitching, blurred vision and red eyes. (See Annex 4 for details)
* Next to the word, the class must list all the other illness or conditions that are not from pesticides that also can result in the sign or symptom. For example, staggering gait and being drunk. (See Annex 5 for more examples). This exercise ensures everyone understand the definition and that other conditions can cause the same S&S

Homework

Distribute a body map to each participant. That evening they must find one person who sprays to interview on each S&S ‘ever experienced. The next day in their groups they practice summarizing the data on one body map. (See example under III. Methods: Signs and Symptoms)

2. Amounts of yearly exposure (liters of solution used per year)

* The instructor should do a sample calculation with one participant using the below table.

<table>
<thead>
<tr>
<th>AMOUNT OF PESTICIDES USED BY FARMERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmer</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1.Sokdai rice</td>
</tr>
<tr>
<td>beans</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

♦ fill in column ‘c.’ and ‘d.’only if spraying on a weekly basis. Otherwise use column ‘e.’ showing how many spray sessions per season.

* Break the class into groups. Each person calculates their days and liters of exposure during the last year. (or use a sample friend or know farmer)
* Among the group of 5, add up the total solution used by these 5 farmers and the average days of exposure and liters per farmer.
Homework

Interview one farmer. Gather and calculate days and liters per year. In class the next day, recalculate days and liters that can be reduced using IPM. Summarize the group data on one newsprint paper. (See example under III. Methods: Amounts used on average last year and with IPM)

3. Household storage and disposal practices

Divide the participants into teams.

Game:

* Each team must collect 10 items: something round, from a plant, smelling good, long/sharp, a wrapper… etc.
* The team that brings in the completed list of items first wins.
* With collected materials, each team must build a replica of their community (include the cotton seed producing fields) on newsprint paper. They then must draw where:
 1. pesticides/tanks storage sites
 2. pesticide disposal sites
 3. food growing areas
 4. water sources
 5. where animals wander
 6. where children play

Class Analysis:

Finally the class analyzes each community picture to determine if pesticide storage and disposal is: child, food, water, livestock safe. Draw the following table on the household picture using the following symbols, checking each box: yes (+) or no (O):

<table>
<thead>
<tr>
<th>SAFE?</th>
<th>Storage</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child safe?</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Food safe?</td>
<td>O</td>
<td>+</td>
</tr>
<tr>
<td>Water safe?</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Animal safe?</td>
<td>+</td>
<td>O</td>
</tr>
</tbody>
</table>
Homework:

Each participant draws his or her own household (or a farmer friend’s). The next day, the class by groups scores each picture and summarizes data on a table like above showing: #/total = % child, food, water and animal safe households for both storage and disposal. (See example under III. Methods: Household Storage and Disposal) During the homework household inspection, each participant must list by Trade name and common name (if legible) the pesticides found (or bring in the container or label to class).

4. Pesticide classification

 a. Before the household observation homework, the instructor shows the class 6 samples of commonly used pesticides. (S)he demonstrates how to find the Trade and common name on one bottle.
 b. The remaining bottles are distributed outside the classroom at stations numbered 1-5 (or more depending on how many samples are brought in for training). In a relay race, each participant has one minute to move from station to station, writing down the Trade and common name. [Rubber gloves must be at each station for safe handling]
 c. The instructor then displays the correct list on a table like below for the class to correct their lists.
 d. The next day each group lists the pesticides they found on their household survey on the same type of table.
 e. Instructor explains WHO hazard levels (See Annex #1)
 f. Using a local pesticide reference book, each group must next add to their list the type (insecticide, fungicide, herbicide) and WHO hazard level. For unknown products check on internet www.pesticideinfo.net (PAN)
<table>
<thead>
<tr>
<th># houses</th>
<th>Trade Name</th>
<th>Common Name</th>
<th>Type</th>
<th>WHO Hazard Level</th>
<th>Chemical Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Folidol</td>
<td>methyl parathion</td>
<td>In</td>
<td>Ia</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Monitor</td>
<td>methamidophos</td>
<td>In</td>
<td>Ib</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Thiodan</td>
<td>endosulfan</td>
<td>In</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Furadan</td>
<td>carbofuran</td>
<td>In</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Decis</td>
<td>deltamethrin</td>
<td>In</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gramoxone</td>
<td>paraquat</td>
<td>He</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Malate</td>
<td>malathion</td>
<td>In</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Delfin</td>
<td>BT (bacillus thuringiensis)</td>
<td>In</td>
<td>Unlikely (IV)</td>
<td></td>
</tr>
</tbody>
</table>

* Instructor explains chemical families.
* Start with the organophosphates (Op), describe that this family of chemicals affects the nervous system; primarily the peripheral ones (nerves outside the brain) and the central ones (the brain).
* List the body systems they affect:
 o body organs: eyes, lungs, digestive system
 o glands
 o muscles
 o brain
* Refer back to the body map and ask students to guess which S&S would be an example of the above body systems being over-stimulated.

<table>
<thead>
<tr>
<th>WHO Hazard Levels</th>
<th># / % in houses</th>
<th>Trade (common name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ia (extremely hazardous)</td>
<td>25/100%</td>
<td>Folidol (methyl parathion)</td>
</tr>
<tr>
<td>Ib (highly hazardous)</td>
<td>15/60%</td>
<td>Monitor (methamidophos)</td>
</tr>
<tr>
<td>II (moderately hazardous)</td>
<td>25/100%</td>
<td>Thiodan (endosulfan)</td>
</tr>
<tr>
<td>* Only one</td>
<td>1/4%</td>
<td>Furadan (carbofuran)</td>
</tr>
<tr>
<td>* Two</td>
<td>15/60%</td>
<td>Gramoxone (paraquat)</td>
</tr>
<tr>
<td>* Thee</td>
<td>5/20%</td>
<td>Decis (deltamethrin)</td>
</tr>
<tr>
<td>* All four</td>
<td>4/20%</td>
<td>Malate (malathion)</td>
</tr>
<tr>
<td>III (slightly hazardous)</td>
<td>3/12%</td>
<td>Delfin (BT)</td>
</tr>
<tr>
<td>IV (unlikely if used safely)</td>
<td>5/20%</td>
<td></td>
</tr>
</tbody>
</table>
* Continue using the same methods with each chemical family: carbamates (C), organochlorines (Oc), pyrethroids (Py), and paraquat (if commonly used). See Annex # 2 for details.

* Ask each group to complete their table adding the chemical family (if known) to each pesticide. A final group tables may look like this:

<table>
<thead>
<tr>
<th># houses</th>
<th>Trade Name</th>
<th>Common Name</th>
<th>Type</th>
<th>WHO Hazard Level</th>
<th>Chemical Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Folidol</td>
<td>methyl parathion</td>
<td>In</td>
<td>Ia</td>
<td>Op</td>
</tr>
<tr>
<td>5</td>
<td>Monitor</td>
<td>methamidophos</td>
<td>In</td>
<td>Ib</td>
<td>Op</td>
</tr>
<tr>
<td>3</td>
<td>Thiodan</td>
<td>endosulfan</td>
<td>In</td>
<td>II</td>
<td>Oc</td>
</tr>
<tr>
<td>4</td>
<td>Furadan</td>
<td>carbofuran</td>
<td>In</td>
<td>II</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>Decis</td>
<td>deltamethrin</td>
<td>In</td>
<td>II</td>
<td>Py</td>
</tr>
<tr>
<td>2</td>
<td>Gramoxone</td>
<td>paraquat</td>
<td>He</td>
<td>II</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Malate</td>
<td>malathion</td>
<td>In</td>
<td>III</td>
<td>Op</td>
</tr>
<tr>
<td>1</td>
<td>Delfin</td>
<td>BT (bacillus thuringiensis)</td>
<td>In</td>
<td>Unlikely (IV)</td>
<td>biological</td>
</tr>
</tbody>
</table>

h. Finally the class should make another summary list of pesticides found in households in each group by chemical family (Op, OC, C, Py, paraquat):

<table>
<thead>
<tr>
<th>Chemical family</th>
<th># / % in houses</th>
<th>Trade (common name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organophosphates (Op)</td>
<td>25/100%</td>
<td>Folidol (methyl parathion)</td>
</tr>
<tr>
<td>* Only one</td>
<td>5/20%</td>
<td>Monitor (methamidophos)</td>
</tr>
<tr>
<td>* Two</td>
<td>15/60%</td>
<td>Malate (malathion)</td>
</tr>
<tr>
<td>* All three</td>
<td>5/20%</td>
<td></td>
</tr>
<tr>
<td>Carbamates (C)</td>
<td>12/48%</td>
<td>Furadan (carbofuran)</td>
</tr>
<tr>
<td>Organochlorines (Oc)</td>
<td>15/60%</td>
<td>Thiodan (endosulfan)</td>
</tr>
<tr>
<td>Pyrethroids (Py)</td>
<td>25/100%</td>
<td>Gramoxone (paraquat)</td>
</tr>
</tbody>
</table>
5. Exposure through pesticide handling during mixing and spraying

* Ask participants to list the ways pesticides enter the body
 o Through the skin
 o Through breathing
 o Through the mouth

* Ask the class to develop a checklist of things they want to observe showing a farmer being exposed through these three routes (e.g.)
 o Hand contact during mixing
 o Rubbing eyes with contaminated hands
 o Leaking tanks, wands
 o Wet clothing
 o Bare feet
 o Spraying up wind
 o Smoking, eating, drinking, wiping face with contaminated hands

* Ask which is the most common and critical way that pesticides enter the body during spraying
 o Through the skin: pesticides are designed to penetrate the hard covering of insects. Human skin is softer and more permeable. Therefore skin easily absorbs pesticides and is the most common route of exposure.

* Ask during which step of a spray operation is skin contamination most dangerous and why
 o During mixing
 o This is because the sprayer is handing the concentrated pesticide.

* Class should observe a sprayer dressed in white with white socks and white gloves mix and spray an entire field with red dye.

* Each group should draw and present their observations to the class at large
6. Sample Training Agenda (for School Children)

<table>
<thead>
<tr>
<th>Day</th>
<th>Morning</th>
<th>Afternoon</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Scavenger hunt</td>
<td>- Child?</td>
<td>b. List (or bring to class) the pesticides found in your home.</td>
</tr>
<tr>
<td></td>
<td>2. Build a house with materials from hunt</td>
<td>- Food?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Add places of:</td>
<td>- Water?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Food: storage, use, consumption</td>
<td>- Animal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Water: source, storage, use</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Animal: shelter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Pesticide storage, disposal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tank storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Analysis each picture for household safety:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Child?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Food?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Water?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Animal</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>Household homework:</td>
<td>3. Each group present picture and support safety conclusions.</td>
<td>a. Interview your parent about S&S ‘ever experienced’.</td>
</tr>
<tr>
<td></td>
<td>1. Score each picture for safety.</td>
<td></td>
<td>b. Gather information about his liters of pesticide use per year.</td>
</tr>
<tr>
<td></td>
<td>2. Summarize data on one newsprint picture that shows safe and unsafe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Each group present picture and support safety conclusions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yearly pesticide use:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Estimate your parent’s yearly use with the table.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Put group totals and averages on a newsprint.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Present your findings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>Morning</td>
<td>Afternoon</td>
<td>Homework</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Wednesday | Review observing exposure:
1. 3 routes
2. Most critical routes
3. Ways of exposure
 - Fingers-hands
 - Spraying up wind
 - Wet clothes
 - Mixing with bare hands
 - Blowing out wand
Data collection from Farmers:
1. Household evaluation
2. Liters/year
3. S&S before spraying
4. List of pesticides used
5. Observe spray session
6. S&S after spraying
Summarize data by group: Show findings on newsprints | Classifying pesticides:
1. Make a list of the pesticides used by observed farmers by brand, common and local name.
2. From reference list add WHO level and chemical family.
3. Teacher explains WHO level.
4. Make summary list of pesticides used by WHO level.
5. Teacher explains symptoms of the major chemical families.
6. Make a summary list of pesticides by chemical family |
| Thursday | Finish Data Collection
24 hours post spray S&S
Summarize pre/post/24hr S&S data
Chemical classification of pesticides
Finish explaining effects of major chemical families.
Group Homework analysis:
S&S ‘ever experienced’ of parent
Amounts of pesticides used/year | Data analysis:
(homework + observed farmers)
1. Household storage and disposal
2. Amounts of pesticides used/yr
3. Pesticides used by
 - WHO level
 - Chemical family
4. Signs and symptoms
5. Exposure hazards
Practice Presentation for Parents
Student practice presenting each newsprint and interpreting results |
| Friday | Presentation for Parents
1. Present data and interpret meaning
2. Class-parent discussion
3. Plan community interventions | Teacher-Student Planning for Future Health Activities |
TECHNICAL ANNEXES

1. WHO Hazard Classification

LD₅₀: Human toxicity level. It is based on experiments with animals and is the number of mg of toxicant per kg of body weight required to kill 50% of a large population of test animals. (optional information)

WHO Hazard Classifications: World Health Organizations classifies most pesticides by common name in terms of their potential human health effects. These classifications are usually based on the acute oral LD₅₀ levels.

- Ia = extremely hazardous
- Ib = highly hazardous
- II = moderately hazardous
- III = slightly hazardous
- IV (U) = unlikely if used safely

This table* below can be used optionally:

<table>
<thead>
<tr>
<th>Class</th>
<th>LD<sub>50</sub> for the rat (mg/kg body weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
</tr>
<tr>
<td></td>
<td>Solids</td>
</tr>
<tr>
<td>Ia = extremely hazardous</td>
<td>5 or less</td>
</tr>
<tr>
<td>Ib = highly hazardous</td>
<td>5-50</td>
</tr>
<tr>
<td>II = moderately hazardous</td>
<td>50-500</td>
</tr>
<tr>
<td>III = slightly hazardous</td>
<td>500-2000</td>
</tr>
<tr>
<td>IV = unlikely if used safely</td>
<td>over 2000</td>
</tr>
</tbody>
</table>

2. **Chemical families of pesticides**

Each pesticide generally belongs to a chemical family on which general health effects are known.

- **Organophosphates**: disturbs the peripheral nervous system (long acting)
- **Carbamates**: disturbs the peripheral nervous system (short acting)
- **Organochlorines**: disturbs the central nervous system (long acting)
- **Pyrethroids**: irritant to eyes, skin, and respiratory tract
- **Thiocarbamates**: irritant to eyes, skin, and respiratory tract
- **Paraquat**: irritant to skin and upper respiratory tract, if enters bloodstream (through skin or ingestion) causes lung and kidney failure

Organophosphates affect the central nervous system (brain) and peripheral nervous system (nerves found outside of the brain or spinal cord). Organophosphates attach themselves to the enzyme (acetylcholinesterase-AChE) that stops nerve transmission. Therefore, there is suppression of AChE and continuous electrical nerve transmission. This particularly affects the muscles, glands and smooth muscles that make the body organs function. Farmers may have the following symptoms that can appear 30 minutes after exposure and may last up to 24 hours:

<table>
<thead>
<tr>
<th>General central nervous system</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fatigue</td>
</tr>
<tr>
<td>• Dizziness</td>
</tr>
<tr>
<td>• Headache</td>
</tr>
<tr>
<td>• Hand tremors</td>
</tr>
<tr>
<td>• Staggering gait</td>
</tr>
<tr>
<td>• Convulsions</td>
</tr>
<tr>
<td>• Loss of consciousness</td>
</tr>
<tr>
<td>• Coma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From muscle over stimulation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Muscle weakness</td>
</tr>
<tr>
<td>• Muscle cramps</td>
</tr>
<tr>
<td>• Twitching eyelids</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>From gland over stimulation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Salivary gland- excessive salivation</td>
</tr>
<tr>
<td>• Sweat gland- excessive sweating</td>
</tr>
<tr>
<td>• Lacrimal gland-excessive eye tearing</td>
</tr>
</tbody>
</table>
From organ over-stimulation:

<table>
<thead>
<tr>
<th>Eyes</th>
<th>Blurred vision (constricted pupils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>Stomach cramps</td>
</tr>
<tr>
<td>Pulmonary (Lungs)</td>
<td>Nausea</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
</tr>
<tr>
<td></td>
<td>Diarrhea</td>
</tr>
<tr>
<td></td>
<td>Chest tightness</td>
</tr>
<tr>
<td></td>
<td>Wheezing</td>
</tr>
<tr>
<td></td>
<td>Cough</td>
</tr>
<tr>
<td></td>
<td>Runny nose</td>
</tr>
</tbody>
</table>

Carbamates: behave the same way as the organophosphates in that they suppress AChE, and cause over-stimulation of the nerves. The effect comes on sooner after exposure (as fast as 15 minutes) and does not last as long (3 hours). Symptoms are the same with the exception of these symptoms below which are rare:
- Convulsions
- Loss of consciousness
- Coma

Organochlorines: affect the central nervous system. They are absorbed by fat so they can stay in the body a long time. As the fats cells in breast tissue can store organochlorines, it can measured in breast milk. The effects can occur within one hour after absorption and acute effects can last up to 48 hours. Some organochlorines (endosulfan) are rapidly and easily absorbed through the skin. The nerves stimulating glands are not affected so you will not see:
 * excessive salivation
 * excessive sweating
 * excessive eye tearing
 (or over-stimulation of small muscles like)
 * twitching eyelids
But you will see symptoms that are from disruption of central nervous:
 * Muscle Weakness
 * Dizziness
 * Headache
 * Numbness
 * Nausea
 * Loss of consciousness
 * Convulsions
 * Vomiting
 * Hand tremors
 * Staggering gait
 * Anxiety/restlessness
 * Confusion
Pyrethroids: are irritants to the eyes, skin and respiratory tract. The symptoms last from 1-2 hours. The symptoms from spraying can be:

Normal use:	* Numbness (hypersensitivity of skin)
	* Shortness of breath (wheezing)
	* Dry throat
	* Sore Throat
	* Burning nose
	* Skin itching
If ingested:	* Loss of consciousness/coma
	* Convulsions
High doses:	* Vomiting
	* Diarrhea
	* Excessive saliva
	* Twitching eyelids
	* Staggering gait
	* Irritability

Thiocarbamates: are similar to the pyrethroids in that they also are irritants to the eyes, skin and respiratory tract. The symptoms came appear immediately when spraying and can be:

Respiratory tract:	* Dry throat
	* Sore Throat
	* Burning nose
	* Cough
Eyes:	* Eye irritation (burning, itching)
	* Red eyes
Skin:	* Skin itching
	* White spots on skin
	* Scaling skin rash
	* Red rash
Paraquat: is very toxic to the skin and mucous membranes (inside of mouth, nose, eyes). Particles are too large to get deep into the lungs*, but once paraquat is in the blood it collects in the lungs. If ingested (drink) it is very lethal

<table>
<thead>
<tr>
<th></th>
<th>* dryness, cracks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* erythema (redness)</td>
</tr>
<tr>
<td></td>
<td>* blistering</td>
</tr>
<tr>
<td></td>
<td>* ulcerations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nails:</th>
<th>* discoloration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* splitting nails</td>
</tr>
<tr>
<td></td>
<td>* loss of nails</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory tract:</th>
<th>* cough</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* nosebleeds</td>
</tr>
<tr>
<td></td>
<td>* sore throat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eyes:</th>
<th>* conjunctivitis (irritation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* ulceration, scarring, blindness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingestion:</th>
<th>* lung fibrosis (stiff lungs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* multi-system organ failure, specifically</td>
</tr>
<tr>
<td></td>
<td>⇒ respiratory failure</td>
</tr>
<tr>
<td></td>
<td>⇒ kidney failure</td>
</tr>
</tbody>
</table>

* Manufacturer claims
3. **Definitions of signs and symptoms.**

The difference between a sign and a symptom:

* **Sign:** something you can observe or see that *requires an examination*
* **Symptom:** something a person feels but you cannot see. So one must ask questions to elicit the story about the symptoms.

For **signs** there are special exams. On the table below, each sign is bolded and next to it are listed ways to look for the sign. In training it is a good idea to either bring in pictures, a video showing the condition, or find a person in the community with the condition. This will be useful in identifying red eyes, the skin conditions, tremors and staggering gait.

For **symptoms** stories are important. One cannot simply ask…”have you felt x, y, or z”…It is important to use probing to get the information with descriptions about how the symptoms feel. So in questioning, use words to probe…”After spraying have you ever felt short of breath which *feels like* you cannot get enough air?” On the table below an example of ‘feels like’ is given for each symptom. But the class must develop their *own feels-like list*, which is more appropriate to their own experience and language.
4. Signs: How to examine for signs

<table>
<thead>
<tr>
<th>SIGNS</th>
<th>HOW TO OBSERVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Tremors</td>
<td>Hands and fingers shake when holding a piece of paper</td>
</tr>
<tr>
<td>* Twitching eyelids</td>
<td>Ask the farmer to close his eyes and pretend he is sleeping. Look for twitching of the eyelids side to side</td>
</tr>
<tr>
<td>* Excessive sweating</td>
<td>Look at the forehead and upper lip to see beads of sweat</td>
</tr>
<tr>
<td>* Redness of the eyes</td>
<td>Both whites of the eye look red</td>
</tr>
<tr>
<td>* Runny nose</td>
<td>Look to see if the farmer rubs his nose a lot. This is different than a cold. The discharge should be clear while with a cold it is yellow or green.</td>
</tr>
<tr>
<td>* Cough</td>
<td>Listen to hear if he is coughing a lot (this could be from smoking so ask if this is worse after spraying)</td>
</tr>
<tr>
<td>* Wheezing</td>
<td>The person makes a whistling sound when they breathe</td>
</tr>
<tr>
<td>* Staggering gait</td>
<td>Ask farmer to walk in a straight line heel to toe with his arms out to the side. If he cannot walk straight this is staggering. Looks like he is drunk</td>
</tr>
<tr>
<td>* Diarrhea</td>
<td>too many stools with water</td>
</tr>
<tr>
<td>* Skin redness</td>
<td>Ask if he has noticed any rashes and look at hands, arms, feet and legs</td>
</tr>
<tr>
<td>* White patches on skin</td>
<td>Ask if any rashes and look at hands, arms, feet and legs</td>
</tr>
<tr>
<td>* Skin scaling</td>
<td>Ask if any rashes and look at hands, arms, feet and legs (like fish scales)</td>
</tr>
<tr>
<td>* Loss of consciousness/coma</td>
<td>Farmer faints, drops to ground and you cannot wake him up</td>
</tr>
<tr>
<td>* Convulsions</td>
<td>Seizure, all the muscles contract, like babies sometime do when they have a high fever. The eyes roll back and the teeth are clenched, the whole body becomes stiff</td>
</tr>
<tr>
<td>* Vomiting</td>
<td>everything from the stomach comes out</td>
</tr>
</tbody>
</table>

Some conditions may appear before and after spraying because they could be **chronic** conditions from using pesticides for a long time. The following conditions may be chronic:
- Staggering gait
- Twitching eyelids
- Tremors
- Skin lesions: redness, white patches, scaling etc.
5. Symptoms: How to interview for symptoms.

<table>
<thead>
<tr>
<th>SYMPTOMS</th>
<th>FEELS LIKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Dry throat</td>
<td>Feels like when you wake up in the morning if you have slept with your mouth open</td>
</tr>
<tr>
<td>* Fatigue/tired</td>
<td>Feels like after climbing a mountain all day long</td>
</tr>
<tr>
<td>* Insomnia (disturbed sleep)</td>
<td>Bad dreams, cannot sleep through the night</td>
</tr>
<tr>
<td>* Chest pain/burning feeling</td>
<td>Like it feels when breathing in chilies or smoke</td>
</tr>
<tr>
<td>* Numbness</td>
<td>Feels like after you sit on your foot too long...like ants or pins and needles in the skin</td>
</tr>
<tr>
<td>* Burning/stinging eyes</td>
<td>Feels like smoke or soap in the eye</td>
</tr>
<tr>
<td>* Itching eyes</td>
<td>Feels like when you have pollen in your eyes</td>
</tr>
<tr>
<td>* Blurred vision</td>
<td>This is like looking at a movie or picture that is out of focus</td>
</tr>
<tr>
<td>* Shortness of breath</td>
<td>Look to see if the farmer is breathing in fast or does he feel he cannot get enough air</td>
</tr>
<tr>
<td>* Dizzy</td>
<td>Feels like after you spin around many times</td>
</tr>
<tr>
<td>* Nausea</td>
<td>the feeling just before you vomit or how you feel if driving on a curvy road or on a boat in rough seas</td>
</tr>
<tr>
<td>* Excessive salivation</td>
<td>Notice if the farmers spits a lot and ask him if he feels there is a lot of spit, like after one eats a lemon</td>
</tr>
<tr>
<td>* Sore throat</td>
<td>It hurts to swallow.</td>
</tr>
<tr>
<td>* Burning nose</td>
<td>Feels like when you are in the kitchen when someone is frying chilies</td>
</tr>
<tr>
<td>* Muscle cramps</td>
<td>Like after playing football all day and the leg muscles seize up, become stiff and hurt</td>
</tr>
<tr>
<td>* Headache</td>
<td>A sharp or squeezing pain in the head</td>
</tr>
<tr>
<td>* Stomach cramps/pain</td>
<td>Pain like you feel just before having diarrhea</td>
</tr>
<tr>
<td>* Skin itching</td>
<td>Like many mosquito bites</td>
</tr>
</tbody>
</table>

One can also ask if the farmer has ever experienced the sign or symptoms. Because a farmer may not want to admit to getting sick from pesticides the wife can be asked for a more accurate story.
6. Other conditions that mimic pesticide poisoning

There are other illnesses or conditions that have the same signs or symptoms of pesticide poisoning. Because of this, it is useful to interview and examine the farmer before and after spraying to know if these things are related to the pesticide or another condition or illness. If the signs or symptoms appear only after spraying, they are more likely from the pesticide. Here are some examples of other conditions that can cause the same signs or symptoms that the farmer may have before spraying: (Signs are in bold)

<table>
<thead>
<tr>
<th>SIGNS OR SYMPTOMS</th>
<th>OTHER CONDITIONS OR ILLNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Fatigue</td>
<td>not enough sleep</td>
</tr>
<tr>
<td>* Insomnia</td>
<td>stress, too many thoughts, worried</td>
</tr>
<tr>
<td>* Staggering gait</td>
<td>drinking too much whiskey</td>
</tr>
<tr>
<td>* Loss of consciousness/coma</td>
<td></td>
</tr>
<tr>
<td>* Convulsions</td>
<td></td>
</tr>
<tr>
<td>* Dizzy</td>
<td>flu, anemia, heart condition</td>
</tr>
<tr>
<td>* Headache</td>
<td>flu, dengue fever, too much whiskey</td>
</tr>
<tr>
<td>* Excessive sweating</td>
<td>fever, wearing too many clothes on a hot day</td>
</tr>
<tr>
<td>* Blurred vision</td>
<td>chronic eye conditions (glaucoma, cataracts)</td>
</tr>
<tr>
<td>* Burning/stinging eyes</td>
<td>allergy</td>
</tr>
<tr>
<td>* Itching of the eyes</td>
<td>allergy</td>
</tr>
<tr>
<td>* Redness of the eyes</td>
<td>eye infection</td>
</tr>
<tr>
<td>* Twitching eyelids</td>
<td></td>
</tr>
<tr>
<td>* Excessive salivation</td>
<td></td>
</tr>
<tr>
<td>* Runny nose</td>
<td>flu, common cold (discharge yellow or green)</td>
</tr>
<tr>
<td>* Burning nose</td>
<td></td>
</tr>
<tr>
<td>* Dry throat</td>
<td>thirsty, dehydration</td>
</tr>
<tr>
<td>* Sore throat</td>
<td>flu, common cold, throat infection</td>
</tr>
<tr>
<td>* Chest pain/burning feeling</td>
<td>heart condition (occurs with exercise)</td>
</tr>
<tr>
<td>* Shortness of breath</td>
<td>too much smoking, heart condition</td>
</tr>
<tr>
<td>* Wheezing</td>
<td>too much smoking, allergies</td>
</tr>
<tr>
<td>* Cough</td>
<td>too much smoking, flu, common cold</td>
</tr>
<tr>
<td>* Nausea</td>
<td>food poisoning, flu, too much whiskey</td>
</tr>
<tr>
<td>* Stomach cramps/pain</td>
<td>food poisoning, flu</td>
</tr>
<tr>
<td>* Diarrhea</td>
<td>food poisoning, flu</td>
</tr>
<tr>
<td>* Vomiting</td>
<td>food poisoning, flu</td>
</tr>
<tr>
<td>* Skin redness</td>
<td>other skin disease (psoriasis)</td>
</tr>
<tr>
<td>* White patches on skin</td>
<td>other skin disease (psoriasis)</td>
</tr>
<tr>
<td>* Skin scaling</td>
<td>other skin disease (psoriasis)</td>
</tr>
<tr>
<td>* Numbness</td>
<td></td>
</tr>
<tr>
<td>* Itching of skin</td>
<td>scabies</td>
</tr>
<tr>
<td>* Muscle cramps</td>
<td></td>
</tr>
<tr>
<td>* Muscle weakness</td>
<td>flu</td>
</tr>
<tr>
<td>* Tremors</td>
<td>too much whiskey</td>
</tr>
</tbody>
</table>
7. Determining If Signs And Symptoms Are Pesticide Related

Farmers must be questioned before spraying in case they have signs and symptoms from another _pre-exiting_ condition that can mimic pesticide poisoning. Also, they should be visited the next day in case other signs and symptoms develop later in the day or during the night. For your results, only use the last column which would be more likely to be pesticide related. The exception would be those possible chronic effects:

- Staggering gait
- Twitching eyelids
- Tremors
- Skin lesions: redness, white patches, scaling etc.

Use this table to interpret your before, after and next morning results.

<table>
<thead>
<tr>
<th>Before spray</th>
<th>After spray</th>
<th>Next morning</th>
<th>=</th>
<th>Pesticide related?</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>No or chronic effect</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>No</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>+</td>
<td>=</td>
<td>Unclear maybe (late effect or another problem)</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>0</td>
<td>=</td>
<td>No</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>=</td>
<td>No</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>+</td>
<td>=</td>
<td>Yes (late effect)</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>0</td>
<td>=</td>
<td>Yes (short effect)</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>+</td>
<td>=</td>
<td>Yes (prolonged effect)</td>
</tr>
</tbody>
</table>

(+) = yes
(0) = no
8. Surveillance Form

- Twitching eyelids (2)
- Blurred vision (2)
- Burning nose (1)
- Excessive sweating (2)
- Red eyes (1)
- Burning/stinging/itchy eyes (1)
- Excessive tearing (2)
- Runny nose (2)
- Excessive salivation

- Dizziness (1)
- Convulsions (3)
- Exhausted (1)
- Headache (1)
- Dry throat (1)
- Short of breath (1)
- Wheezing (2)
- Muscle weakness (2)
- Tremor (2)
- Muscle cramps (2)
- Skin rashes: (1) - redness - white rash - cracks/scales - blisters
- Nausea (2)
- Stomach cramps (2)
- Numbness (1)
- Diarrhea (2)
- Itchy skin (1)
- Staggering gait (2)